
Closed Loop Optimization of Gene Sequencing Run TimesClosed Loop Optimization of Gene Sequencing Run Times

In a high volume production genetics laboratory, optimizing throughput and removing bottlenecks are serious concerns. The goal of this project was to automate optimization of run length on ABI gene sequencers on a
per plate level. Several methods for estimating the optimal run length of individual past sequences are presented as well as an algorithm for calculating the optimal run length for the population of plates. The algorithm

accurately determines a shortened run time for low performing projects but also indicates that many projects should be run longer than they currently are.

Daniel CasnerDaniel Casner(1,3,4)(1,3,4), Jason Baumohl, Jason Baumohl(1,2)(1,2), Alex Copeland, Alex Copeland(1,2)(1,2), , Joshua DillonJoshua Dillon(1,3,5)(1,3,5), ,
David PletcherDavid Pletcher(1,3)(1,3)

[1] DOE Joint Genome Institute, [2] Lawrence Berkeley National L[1] DOE Joint Genome Institute, [2] Lawrence Berkeley National Laboratory, [3] Lawrence Livermore National Laboratory,aboratory, [3] Lawrence Livermore National Laboratory,
[4] Rensselaer Polytechnic Institute,[5] Purdue University[4] Rensselaer Polytechnic Institute,[5] Purdue University

Results:Results:Introduction:Introduction:Introduction:
The Joint Genome Institute (JGI) sequences more than 3 billion bases per year. One of the major bottlenecks in the sequence
production process is the gene sequencing itself. Capillary electrophoresis is used so running the sequencer longer increases the
number of bases read. However, later bases have lower quality scores and so may not be worth collecting.

Two distinct cases emerged after running our
algorithm on a number of libraries.

1. Low performing: The majority of the samples
cease producing useful data before the end of the
run time (e.g. Fig. 4a). In this case the algorithm
fits sample data with low deviation and predicts
an optimal stop time for the population which
matches observed results.

2. High Performing: A large number of samples
continue to produce data up to the end of the run
and are only stopped when the sequencer is
stopped (e.g. Fig 4b). The stop times form a large
cluster at the end of the run time. Our algorithm
fits a distribution from the variance of the samples
which stop before the end of the run time. From
this approximation a lengthened runtime is
estimated.

Discussion:Discussion:
Our original goal was to improve production by shortening sequencing run time where resources were being wasted collecting
unusable data.

Ironically we find that we should run a large number of high performing libraries longer than we presently do. In order to find
truly optimal run times, we need a cost model that can directly compare the cost of lost material and opportunity associated with
longer run times to the cost of bases missed with shorter run times.

For low performing samples our algorithm does a very good job finding the optimal run time for the population.

UCRLxx-xxxxxxx

LBNL-61342-Poster
This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory
under contract No. DE-AC02-05CH11231 and Los Alamos National Laboratory under contract No. W-7405-ENG-36.

Figure 1: ABI 3730 Capillary
Electrophoresis Gene Sequencer

Original Run Length 14000 scans 78 minutes
Initial Estimated Optimal Run Length 14600 scans 81 minutes
Experimental Run Length 18000 scans 100 minutes
Estimated optimal run length after experiment 16600 scans 92 minutes

In the second case finding the “optimal” run
time is difficult because the algorithm has to
extrapolate what the distribution would have
looked like had the sequencer been run longer.
To determine the validity of our algorithm in
this case, we conducted an experiment where
several plates were run longer than normal.

The estimated lengthened run time is not as
long as the true optimal run time, however, it
is sufficient to walk the run time out to
optimality over several iterations. Since the
cost of running the sequencers too long is far
greater than the cost of discarding a small
amount of data, this is a useful behavior.

Methods:Methods:
Prior to looking for an algorithm to find the optimal stop time, we examined several metrics of the “end of useful data” including:

•Last call time of the KB base-calling algorithm
•Number of “Q20” bases
•Jazz trim length
•Trends in Q score of base-calls
•PHRAP alignment length

These metrics indicate the time when a sample which has already
been sequenced, stopped producing useful data.

Once we have a collection of stop times for past samples, this data
is clustered using the k-means, farthest neighbors and nearest
neighbors algorithms. A convolution of Gaussian distributions is
constructed based on the means and variances of the clusters. The
convolution which fits the data best is then used as a continuous
probability density function.

From the probability density function we can trivially calculate the
necessary runtime to collect N-percent of the data by Riemann
sum integration.

Table 1: Summary of our extended run time experiment.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

Extended Run Time Experiment: Estimated Probability Density Functions

K-Means
Farthest Neighbors
Nearest Neighbors

Figure 5b: The estimated probability density
function for the experimental data. Note the

difference between this and figure 4b.

Figure 4a: A low performing library whose run
time should be shortened.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

Low Performing Library Estimated Probability Density Function After Clustering

Estimated optimal
cutoff time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

Low Performing Library Actual Stop Time Probability Denstity

Estimated optimal
cutoff time

Figure 4b: A very high performing library which
would produce more data given a longer run

time.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

High Performing Libary Estimated Probability Denstity Function After Clustering

Estimated
optimal

cutoff time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (ABI scan #)

High Performing Library Actual Stop Time Probability Density

Estimated
optimal

cutoff time

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000

In
te

ns
ity

Time (ABI scan #)

Processed ABI Trace Data

A
C
T
G

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000 14000

Q

Time (ABI scan #)

Basecall Quality Scores vs. Time

Figure 2a: Top the processed trace data for all
four bases from the ABI sequencer in a typical
run. Bottom the quality score of the base calls

over the run. Quality is highest in the middle and
falls off later in the run.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 14000 14050 14100 14150 14200 14250

R
es

po
nc

e
In

te
ns

ity

Time (ABI scan #)

Processed Trace Data Durring Low Quality Segment

A
C
T
G

 0

 200

 400

 600

 800

 1000

 1200

 2500 2550 2600 2650 2700 2750

R
es

po
nc

e
In

te
ns

ity

Time (ABI scan #)

Processed Trace Data Durring High Quality Segment

A
C
T
G

Figure 2b: An expanded view of the trace data
during high and low quality parts of a run. Later

in the run the signal gets noisier and bases
aren’t called with as great a confidence.

In order to increase production at the JGI we want to
find the optimal run time to collect all useful data
without wasting time reading bases that aren’t usable.

Previously we had no automated way to determine
the appropriate run length. In this project we
developed an algorithm for estimating optimal run
length suitable for automation.

Figure 5a: Stop time data from the extended
run time experiment.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
ro

ba
bl

ili
ty

Time (ABI scan #)

Extended Run Time Experiment: Actual Probability Density

Figure 3: This plot shows the convolved Gaussian distributions resulting from
all three clustering algorithms run with “end of useful data” times produced by a
variant of the Jazz trimming algorithm.

The three clustering algorithms produce somewhat different results even when
run on the same data. Hence we use all three and choose the one which best
fits the data we have. Usually Farthest Neighbors provides the best fit but not
always.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Stop Time (ABI scan #)

Comparison of fitted probability density functions after variouse clustering algorithms

K-Centroids
Farthest Neighbors
Nearest Neighbors

